Evidence for gaze feedback to the cat superior colliculus: discharges reflect gaze trajectory perturbations.
نویسندگان
چکیده
Rapid coordinated eye-head movements, called saccadic gaze shifts, displace the line of sight from one location to another. A critical structure in the gaze control circuitry is the superior colliculus (SC) of the midbrain, which drives gaze saccades by relaying cortical commands to brainstem eye and head motor circuits. We proposed that the SC lies within a gaze feedback loop and generates an error signal specifying gaze position error (GPE), the distance between target and current gaze positions. We investigated this feedback hypothesis in cats by briefly stopping head motion during large ( approximately 50 degrees ) gaze saccades made in the dark. This maneuver interrupted intended gaze saccades and briefly immobilized gaze (a plateau). After brake release, a corrective gaze saccade brought the gaze on goal. In the caudal SC, the firing frequency of a cell gradually increased to a maximum that just preceded the optimal gaze saccade encoded by the position of the cell and then declined back to zero near gaze saccade end. In brake trials, the activity level just preceding a brake-induced plateau continued steadily during the plateau and waned to zero only near the end of the corrective saccade. The duration of neural activity was stretched to reflect the increased time to target acquisition, and firing frequency during a plateau was proportional to the GPE of the plateau. In comparison, in the rostral SC, the duration of saccade-related pauses in fixation cell activity increased as plateau duration increased. The data show that the cat's SC lies in a gaze feedback loop and that it encodes GPE.
منابع مشابه
Direct evidence for the contribution of the superior colliculus in the control of visually guided reaching movements in the cat.
The production of visually guided reaching movements relies on a large neural network. Based on indirect experimental evidence, it has been suggested that the superior colliculus, a subcortical centre known for its key role in controlling rapid orienting gaze shifts, also belongs to this network. The aim of the present study was to investigate the role of the cat superior colliculus (SC) in the...
متن کاملCompensation for gaze perturbation during inactivation of the caudal fastigial nucleus in the head-unrestrained cat.
Muscimol injection in the caudal part of the fastigial nucleus (cFN) leads, in the head-unrestrained cat, to a characteristic dysmetria of saccadic gaze shifts toward visual targets. The goal of the current study was to test whether this pharmacological cFN inactivation impaired the ability to compensate for unexpected perturbations in gaze position during the latency period of the saccadic res...
متن کاملResponses of Collicular Fixation Neurons to Gaze Shift Perturbations in Head-Unrestrained Monkey Reveal Gaze Feedback Control
A prominent hypothesis in motor control is that endpoint errors are minimized because motor commands are updated in real time via internal feedback loops. We investigated in monkey whether orienting saccadic gaze shifts made in the dark with coordinated eye-head movements are controlled by feedback. We recorded from superior colliculus fixation neurons (SCFNs) that fired tonically during fixati...
متن کاملBrain stem omnipause neurons and the control of combined eye-head gaze saccades in the alert cat.
When the head is unrestrained, rapid displacements of the visual axis-gaze shifts (eye-re-space)-are made by coordinated movements of the eyes (eye-re-head) and head (head-re-space). To address the problem of the neural control of gaze shifts, we studied and contrasted the discharges of omnipause neurons (OPNs) during a variety of combined eye-head gaze shifts and head-fixed eye saccades execut...
متن کاملGaze shifts evoked by electrical stimulation of the superior colliculus in the head-unrestrained cat. I. Effect of the locus and of the parameters of stimulation.
Several studies have suggested that the pattern of neuronal activity in the superior colliculus (SC) interacts with the well-known topographical coding of saccades (motor map). To further describe this interaction, we recorded gaze saccades evoked by electrical microstimulation of SC deeper layers in the head-unrestrained cat and systematically varied the collicular locus (25 sites) and paramet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 11 شماره
صفحات -
تاریخ انتشار 2004